
UCRL-ID-133226

Portable Implementation of Implicit Methods for the
UEDGE and BOUT Codes on

Parallel Computers

T.D. Rognlien
X.Q. Xu

February 17,1999

This is an informal report intended primarily for internal or limited external
distribution. The opinions and conclusions stated are those of the author and
may or may not be those of the Laboratory.

Work performed under the auspices of the U.S. Department of Energy by the
T Natinnal T.abnratnrv under Contract W-7405-CNc-d5J

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor the University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or the University of California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (615) 576-8401, FTS 626-8401

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161

March 15, 1999

Portable Implementation of Implicit Methods for the

UEDGE and BOUT Codes on Parallel Computers

T.D. Rognlien and X.Q. Xu

Lawrence Livermore National Laboratory

Livermore, CA 94551

A description is given of the parallelization algorithms and results for two codes used ex-

tensively to model edge-plasmas in magnetic fusion energy devices. The codes are UEDGE,

which calculates two-dimensional plasma and neutral gas profiles, and BOUT, which cal-

culates three-dimensional plasma turbulence using experimental or UEDGE profiles. Both

codes describe the plasma behavior using fluid equations. A domain decomposition model is

used for parallelization by dividing the global spatial simulation region into a set of domains.

This approach allows the used of two recently developed LLNL Newton-Krylov numerical

solvers, PVODE and KINSOL. Results show an order of magnitude speed up in execution

time for the plasma equations with UEDGE. A problem which is identified for UEDGE is

the solution of the fluid gas equations on a highly anisotropic mesh. The speed up of BOUT

is closer to two orders of magnitude, especially if one includes the initial improvement from

switching to the fully implicit Newton-Krylov solver. The turbulent transport coefficients

obtained from BOUT guide the use of anomalous transport models within UEDGE, with

the eventual goal of a self-consistent coupling.

2

I. Introduction

The goal of this work is to develop the first numerical codes for simulation of edge

plasmas for magnetic fusion energy (MFE) d evices that exploit the power of parallel com-

puters. Understanding edge plasmas is central to the problems of high heat flux from

plasma power exhaust, adequate helium removal, and maintaining sufficient edge temper-

ature, all recognized as critical issues for magnetic fusion reactors. Proper assessment of

these issues requires detailed computer codes. The last several years has witnessed a period

of unprecedented growth in the computer power available for modeling physical problems.

To utilize this computational power, one needs to make the paradigm shift from coding

for single-processors to coding for multi-processor computers. For codes with explicit time

advancement, this shift is relatively straightforward because only local quantities enter ex-

pressions for the solution at each time step. However, many physical problems, including

fusion edge plasmas, contain various phenomena that yield a wide range of time scales

which render the equations describing them “stiff” in the numerical sense. Here, implicit

methods are especially useful, but implicit methods are inherently nonlocal spatially and

thus present a bigger challenge for parallelization compared to explicit methods.

The simulation of edge-plasmas has many time scales because of the simultaneous mod-

eling of ion and electron transport along and across a confining magnetic field, together

with neutral particle processes. Here we describe the parallelization of two codes that sim-

ulate the edge-plasma region: UEDGEr solves for the two-dimensional (2-D) profiles of a

multi-species plasma and neutrals given some anomalous cross-field diffusion coefficients,

and BOUT2 solves for the three-dimensional (3-D) turbulence that gives rise to the anoma-

lous diffusion. These two codes are thus complementary in solving different aspects of the

edge-plasma transport problem; UEDGE needs BOUT’s turbulent transport results, and

BOUT needs UEDGE’s plasma profiles. Each code can take from a day to weeks on single-

processor computers for large problems. An essential step to coupling these calculations

is speeding up their individual execution times since many iterations may be needed for a

consistent solution.

This parallelization work benefits greatly from the development of two parallel implicit

solvers by Hindmarsh and Taylor :3 PVODE solves a system of time dependent ordinary

3

differential equations, and KINSOL solves a system of nonlinear equations typically aimed at

finding steady-state solutions. The serial versions of these Newton-Krylov solvers, VODPK4

and NKSOL,5 have been used very productively for the serial version of UEDGE. However,

for such solvers to work well for UEDGE, our experience on serial computers shows that

the system of equations must be well preconditioned. The preconditioning step is to solve a

closely related problem in a more efficient but approximate manner which, in effect, serves as

a guess for the final solution. 4y5 Thus, part of our work for UEDGE focuses on development

of a parallel preconditioner based on a domain decomposition model. In addition, we have

collaborated with Hindmarsh and Taylor3 to help debug and test interface routines that

allow us to run UEDGE, written in FORTRAN, with PVODE and KINSOL, written in C,

on a variety of parallel computer platforms from the massively parallel T3E computer to

shared-memory workstations with multiple processors (SUN and DEC). This aspect of our

work demonstrates, for a complex problem, how one can reuse existing FORTRAN coding,

and with moderate extensions, utilize recently developed implicit parallel solvers.

Another element of portability is provided by implementing message passing between

multiple processors by using the MPI package. 6 This package is available on many different

platforms and allows one to utilize either shared memory or individual processor memory

without changing the code. With MPI, one can now use processors on one computer or a

network of computers. Also, the serial version of UEDGE has been made very productive

through the use the BASIS system, ’ but this programming and computing environment

is not available on all computer platforms. This problem has been alleviated by recent

development by Grate” of a conversi on capability from BASIS to the more widely available

PYTHON system,lO and application of the conversion to UEDGE by Yang.r2

The computational time required for the BOUT code exceeds that of UEDGE because

BOUT simulates short to moderate wavelength turbulence in 3-D. We have made more

than an order of magnitude gain in speed for BOUT by converting to the fully implicit

solver PVODE even on a single processor (the single processor version is called CVODE).

In contrast to UEDGE which seeks steady-state solutions, it is found that the large BOUT

speed up is possible even without a preconditioner, in part because one needs to maintain

a time step to resolve the fluctuation time-scales of the turbulence. However, we believe

BOUT could take even larger time steps with the aid of a proper preconditioner. To

4

utilize parallel computers, we convert the serial implicit version of BOUT to a parallel

domain-decomposition scheme similar to that of UEDGE which can use many processors

simultaneously. The parallel version of BOUT also uses MPI for portability.

The plan of the reports is as follows: In Sec. II, the geometry and basic equation for the

edge-plasma problem are given. The domain decomposition model used for UEDGE and

BOUT is described in Sec. IIC. The results for the UEDGE parallelization are shown in

Sec. III. The BOUT results from the fully implicit solver and parallelization are given in

Sec. IV. The conclusions are summarized in Sec. V.

II. Equations and Geometry

A. Basic equations

The basic models in the UEDGE and BOUT codes are obtained from the plasma fluid

equations of continuity, momentum, and thermal energy for both the electrons and ions as

given by Braginskii. I3 The continuity equations have the form

$+v*(nepe,;) = se”,,; (1)

where n,,; and v,,i are the electron and ion densities and mean velocities, respectively. The

source term 27:; arises from ionization of neutral gas and recombination. I

The momentum equations are given by

nm,C% + me,ine,ive,i * ‘tJVe,i = -VPe,i + qn,,i (E + v,,; x B/c) - F,,; - R,,; + SET. (2)

Here m; is the ion mass, Pe,; = n,,;T,,; is the pressure with T,,; being the temperatures, q

is the particle charge, E is the electric field, B is the magnetic field, c is the speed of light,

F,,; = V .I’&; is the viscous force, and R,,; is the thermal force.13 The source Sre contains

a sink term -nm;,,viSip, which arises if newly created particles have no drift motion. 7

The ion and electron energy equations can be written in the form

3 aT,; 3
s”$ + snve,i * VTe,; + Pe,iV * v,,; = -V * g,,; - II,,; . Vv,,; + Q~,;. (4

Here, q,,i are the heat fluxes, and Qe,; are the volume heating terms.13

5

In their general three-dimensional form, the six equations given above represent ten

separate partial differential equations for n,, n;, v,, v;, T,, and T;. UEDGE and BOUT

use somewhat different assumptions to reduce the complexity of their models. The largest

difference as discussed in Sec. B is that UEDGE assumes symmetry in a third dimension,

usually the toroidal direction for a fusion device, whereas BOUT allows fluctuations to have

variations in all 3 spatial dimensions even though the equilibrium profiles are toroidally

symmetric.

B. Geometry

Both UEDGE and BOUT are written in general coordinates that can be adopted to a

slab, cylinder, or torus by the use of the appropriate metric coefficients. For MFE fusion

devices, we have been most interested recently in toroidal devices with an emphasis on

tokamaks. The region occupied by the edge plasma for the poloidal plane of a tokamak

with a single-null divertor is shown in Fig. 1. The long, sometimes closed lines of the

mesh represent poloidal magnetic flux surfaces in which the magnetic field vector lies. For

tokamaks, the strongest magnetic field component is in the toroidal direction, out of the

plane of the figure.

UEDGE and BOUT use the the poloidal flux surfaces as one spatial coordinate. The

second spatial coordinate is often the curves normal to the flux surfaces also shown in

Fig. la, but a nonorthogonal mesh is sometimes used to form the mesh along material

surfaces at the boundary. For UEDGE, this specifies the 2-D coordinate system and all

quantities are assumed uniform in the third direction. However, BOUT allows fluctuations

to arise in the third toroidal direction, even though the equilibrium is uniform. Here, a

segment of the torus is simulated as shown in Fig. lb which is assumed to be periodically

replicated to fill out the full torus. Thus, the wavelength of the longest toroidal mode is set

by the length of the toroidal segment used.

The numerical discretization schemes used by UEDGE and BOUT are similar in the

two dimensions in the poloidal plane. UEDGE uses a conservative finite-volume method

and BOUT uses a finite difference method including a fourth-order spatial discretization

for the nonlinear E x B convective velocity terms.

6

C. Domain Decomposition Model

Because UEDGE and BOUT use the same poloidal mesh, this region can be divided

into domains on parallel computers where separate processors can solve a local problem.

However, for the toroidal edge-plasma problem, there are a set of natural interior boundaries

that need to be identified and accommodated for efficient decomposition. The regions

delineated by these interior boundaries are shown in Fig. 2 for both the poloidal geometry

and the corresponding mapping to a logically-rectangular domain. Information needs to be

passed between cells that touch one of the dotted line between the private-flux and the core

regions to the cells along the other dotted line, and vice versa. These interior boundaries

are used to account for the periodic boundary conditions used within the core region and

the continuity-of-flux condition from the private-flux region 3 to private-flux region 4.

If the selection of the domains is such that the boundaries of major regions l-4 in Fig. 2

always comprised of boundaries of the domains, then the finite difference representation in

a given domain can be entirely local. Such a domain decomposition is shown in Fig. 3a

where sixteen domains are used for the poloidal plane.

The information needed to form the local finite-difference approximations to the deriva-

tives at the boundary of the domains is provided by passing the variable data between

processors (domains) via MP16 in order to fill the guard cells that surround each domain

shown in Fig. 3b. Notice that data needed in a guard cell is not necessarily from the ad-

jacent domain; e.g., the guard cell data for domain 0 in Fig. 3a comes from domain 3.

These guard cells do not contain variables that are advanced for each domain, but rather

contain a copy of this information from another processors. The only exception to this rule

is for UEDGE which uses exterior guard cells to specify boundary conditions; but here the

boundaries conditions are local, so no message-passing between domains is required.

The domain decomposition plays two roles. First, in order to utilize the implicit PVODE

and KINSOL solvers,’ we must divide the physical space of our codes in this manner, where

each processor has all of the information required to solve the local problem. Here we

collaborated with Hindmarsh and Taylor to help debug and test interfaces (often called

wrappers) between their solvers written in C and FORTRAN application programs like

UEDGE that will run on a variety of parallel platforms. Because these Newton-Krylov

7

implicit solvers use a local, finite-difference approximation to the Jacobian, there is no

need to invert a global matrix. The second use of the domain decomposition model is

that it provides the basis for the preconditioning algorithm which is required by UEDGE.

Here the full set of Jacobian elements can be efficiently generated in parallel using all

of the processors. However, to obtain a preconditioner, one needs to approximate the

inversion of the Jacobian which is more nonlocal than the Krylov approximation. To do

this, we perform an approximate LU decomposition of the Jacobian using ILUT7 routines

independently on each processor. This procedure of not including coupling between domains

at the preconditioning level is often referred to as the additive-Schwartz method.’

The manner in which UEDGE utilizes the solvers PVODE and KINSOL can be most

succinctly explained by the diagram in Fig. 4. On the left is the main UEDGE calculation

of the finite-difference equations that yield the “right-hand side” of the evolutionary equa-

tions for each variable. In addition, UEDGE provides a local preconditioning Jacobian on

each processor by approximating derivatives with finite-difference quotients. This operation

should not be confused With the finite-difference approximation used by the PVODE and

KINSOL Krylov solvers. In the central column of the diagram is the wrappers mentioned

in the previous paragraph which pass data from the Fortran UEDGE code to the C solvers,

and vice versa. Finally, on the right is the C solvers, PVODE or KINSOL, themselves. This

section required no development on our part, and can thus be considered as “off-the-self”

software. Note that the foregoing model is replicated for all domains or processors. Com-

munication between processors as required to fill that guard cells is shown by the “mpi send

and receive” boxes in Fig. 4.

The parallel model for BOUT is very similar to that just described for UEDGE, except

that BOUT is written in C and thus requires no extra interface routines to utilize the C

solvers. Since BOUT must follow the time-dependence, only the PVODE option is used

here. Also, as mentioned earlier, BOUT works surprisingly well without a preconditioner.

Some work has been done on testing preconditioners for even more improvement, but more

development is needed here.

8

III. Implementation and Results for UEDGE

A. Implementation

The 2-D plasma transport equations used in UEDGE come from a reduction of those

presented in Sec. IIA for the parameters of the edge plasma. This results in five equations

of the variables of ion density, n;, ion parallel velocity, 011, separate electron and ion tem-

peratures, T, and T;, and the electrostatic potential, 4. In addition, impurity species can

be included which have their own density and parallel velocities. Furthermore, neutral gas

species are present which can be described by various models; the simplest is a diffusion

model, where the neutral density, nn, obeys the continuity equation

(4

Here the neutral velocities, w,,,~, are taken from a diffusion approximation using the charge-

exchange collision frequency between ions and neutrals, and the source and sink terms on

the right-hand side represent recombination and ionization with rate coefficients (a,~,)

and (criw,), respectively. We find that this neutral gas equation plays a major role in the

parallelization work for UEDGE, a point we will return to in the results section.

With UEDGE, we seek steady-state solutions in as efficient a manner as possible, while

still retaining the options to simulate time dependent phenomena when needed. Using large

time steps, or performing nonlinear iterations to steady state with no time step requires

the use of a good preconditioner. The most effective preconditioner is forming the full

Jacobian matrix by finite-difference quotients as mentioned previously. We now have two

options for the parallel UEDGE, either using an algorithm developed within UEDGE, or

because each domain with guard cells is now self-contained, we can use the band-block-

diagonal preconditioners PVBBDPRE and KINBBDPRE supplied as part of the PVODE

and KINSOL routines, respectively.3

To implement the domain decomposition model, we have written routine that automat-

ically divides the global mesh in a manner that respects the “natural” boundaries shown

in Fig. 2. One can specify the number of sub-domains in each of these regions, and the

algorithm works to optimize the load balancing by having any imbalance in the number of

equations per domain being relegated to a minimum number of processors which do less

9

work than the average. In this way, most processors do not need to wait for the few unbal-

anced ones to finish. Usually, we strive for complete load balancing by a proper choice of

mesh sizes and number of domains. The newly written routine also sorts through the index-

ing for the guard cells and provides a map to specify which processors must communicate

boundary data to each other. A set of routines were developed that deal with passing data

from the master processor to domain processors. This data includes the initial guess to

the global solution, the global geometrical data, and the mapping index for the guard cells

needed for each domain. A similar routine is used to gather the data from all the processors

into a global solution at the end of the run. Finally, another set of message-passing routines

was constructed to refresh the guard cell date at the appropriate times during the Jacobian

and Newton-Krylov steps.

B. Results

We have run UEDGE on the T3E-600 using the 16 domain configuration shown in Fig. 3

for the full DIII-D tokamak geometry in Fig. la. The execution time normalized to that for

one processors is presented in Fig. 5. Here PVODE was used to run to steady state with the

plasma equations and two different preconditioners where used, the case marked X being

PVBBDPRE, and the + point being the internal UEDGE preconditioner. In the table below

the figure, the tabulated data shows the number of function (or right-hand side) evaluations,

the number of preconditioners, the normalized time, and the ideal time. Although the speed

of the calculation depends somewhat on the preconditioner used, experience with various

approximate preconditioners on serial computers indicates that both are working well; errors

in the preconditioner typically result in an inability to obtain a solution with UEDGE.

The difference in the speed up results from the two preconditioners in Fig. 5 is due pri-

marily to the frequency with which they are updated. l4 Note from the table in Fig. 5 that the

PVBBDPRE case (labeled X) h as only about l/3 of the preconditioner evaluations compared

to the + data point with the UEDGE preconditioner. As a consequence, the X data point

has almost twice the number of overall function evaluations from PVODE. Thus, the results

from the two preconditioners indicate the sensitivity of the trade-off between more frequent

preconditioner evaluations (and LU decomposition), and fewer Newton-Krylov iterations as

reflected in the function evaluation count. The extra work required because the precon-

10

ditioner is only solved locally on each domain and thus does not include domain-coupling

information is reflected in the lower number of function and preconditioner evaluations for

the 1 processor base-case.

While it is encouraging to obtain nearly an order of magnitude speed up for the plasma

equations in UEDGE, the relatively simple gas equation shown by Eq. (4) proved more

difficult. This problem has been traced back to the highly anisotropic mesh shown in

Fig. 1.i5 This mesh is chosen to best represent the plasma which flows rapidly along the

long flux surfaces and transports slowly across the magnetic flux surfaces owing to magnetic

confinement. However, the gas evolving from the divertor plates does not experience a

magnetic force and is not preferentially confined to the flux surfaces. We have studied

this problem in some detail for a simple gas diffusion problem outside the actual tokamak

geometry and find the same difficulty. We believe that providing more overlap information

in the preconditioner should allow this problem to be overcome, such as using a Schur

complement method. ‘J6 Also, when coupling to a Monte Carlo neutrals code for the gas

description, l7 this issue goes away, and one gets the added benefit that Monte Carlo codes

parallelize very well. We are presently working on this parallel coupling.

IV. Implementation and Results for BOUT

A. Implementation

For edge-plasma turbulence, the application of a fluid model is reasonable in part be-

cause of the low temperature and high collisionality. While the unstable modes can have

wavelengths short compared to the scale lengths of equilibrium profiles, the dominant modes

have perpendicular wavelengths which are larger than the ion gyroradius, ps, consistent with

a fluid approach. Thus, it is appropriate to use the Braginskii fluid equations as presented

in Sec. IIA. By scaling arguments, the full set of fluid equations can be reduced to a six-

variable set for the electrostatic potential, 4, magnetic vector potential, Ali, plasma density,

n;, electron and ion temperatures, T, and T;, and ion parallel velocity 0~11. The parallel

current, jll, and perpendicular vorticity, a, are intermediate variables used to help solve

the system. The equations for all of the variables time-evolutionary equations, except for

11

4 and Ali. These potentials satisfy similar equations:

VQ = w

V2,A,, =

(5)
(6)

The 4 potential equation is not obtained from Poisson’s equation, but rather from the

quasineutrality condition and the current continuity equation. Here VI refers to the Lapla-

cian operator in the directions perpendicular to the magnetic field. The solution to this

rather simple looking equation that has important consequences for the parallel version of

BOUT.

In order to efficiently simulate turbulence with short perpendicular wavelengths com-

pared to parallel wavelengths (i.e., for wavenumbers /ill < Icl), we choose field-line-aligned

ballooning coordinates, IC, y and Z, which are related to the usual flux coordinates $J,,

0, and 9 by the relation x = $ - $s, y = 8, z = cp - Jq(x, y)dy. The partial deriva-

tives are: d/d+ = d/8x - (J aq/6’$,)a/az, d/d8 = d/ay - qd/dz, d/dp = 8182, and

VII = (B,/hB)d/dy. Th e magnetic separatrix is denoted by $ = $J~. Here the key balloon-

ing assumption is (alay/ << (qb’/dz(and d/d0 N -qa/az. In this choice of coordinates, y,

the poloidal angle, is also the coordinate along the field line.

In the most general case, the solution to Eqs. (5-6) requires a three-dimensional solver

since one of the perpendicular directions is a composite of the poloidal and radial directions.

However, utilization of the ballooning assumption with short toroidal wavelengths reduces

the potential equations to two dimensions in the radial and toroidal directions. Since the

potential equations then do not depend on the poloidal coordinate, it is efficient to divide

the parallelization domain in this direction. The technique for solving Eqs. (5-6) is to Fast-

Fourier Transform (FFT) in toroidal direction and finite difference in the radial direction.

Because these potential equations are linear, the solution for 4 and All only requires a

tridiagonal inversion in the radial direction and the FFT; both operations are localized to

each poloidal domain.

To study realistic problems, BOUT obtains magnetic geometry data and plasma profiles

from global data files written by UEDGE. Th e magnetic data comes ultimately from an

MHD equilibrium code and the plasma background profiles can be from a UEDGE solution

or an analytic fit to experimental data. On a parallel machine, a pointer is set so that each

12

processor only reads a subset of the data needed for its domain. Similarly, each processor

writes and reads its own dumpfile for the data in its domain which can be used to restart

or continue the problem. Presently, a restarted problem needs to use the same number of

processors as the original problem. For post-processing, another program collects the data

from a set of the dumped data files generated by BOUT, and generates a single file for the

global solution.

B. Results

The first step to increase the speed of the BOUT code was to convert its ordinary

differential equation (ODE) solver which advances the spatially discretized equations in

time. Originally, an Adams predictor-corrector scheme was used. We then changed the

time advancing algorithm to the Newton-Krylov method by using CVODE and the parallel

PVODE. These new solvers also have an option for the Adams functional iteration method

which is similar, but more implicit than the original predictor-corrector scheme. The com-

parison between the Newton-Krylov and Adams functional iterations on the allowable time

step is dramatic as shown in Fig. 6 which gives the size of the time step as the simulation

evolves in time from its initial conditions. At the beginning, both methods show similar

time steps, but soon, the Krylov method is able to expand its time step by a factor of 50

compared to the Adams method for the same accuracy. In fact, this simulation includes

the shear in the magnetic equilibrium near the X-point which was a problem that we could

not integrate successfully with the previous predictor-corrector method. Thus, using the

Newton-Krylov method has become an essential part of our generalized BOUT simulations.

We have also found the same type of improvement of the Newton-Krylov method over the

Adams functional iteration method for a simple 2-D, 2-species reaction-diffusion problem.

In order to extent these improvements to parallel machines, we developed a parallel

version of BOUT based on domain decomposition as described in Sec. IIC. Because the

potential equations, Eq. (5-6)) are independent of the poloidal dimension in the ballooning-

coordinate representation, the most effective choice of domains are those which segment

the poloidal direction. Thus, in referring to Fig. 3, this would consist of removing the

horizontal dotted lines, and combining domains (0,4,8,12), (1,5,9,13), etc. Using these

poloidal domains, the solution of Eqs. (5-6) can be done entirely on each domain without

13

regard to the other domains. Then, only message-passing is required to fill the guard cells

of each domain in order to use PVODE.

The effectiveness of the parallel Bout on a SUN Wildfire system is shown in Fig. 7. This

parallel system has 16 processors per machine, 3 machines, and shared memory. Here and

elsewhere, the speed up time refers to wall-clock time. Note that the speed up is nearly linear

on one machine, with a small degradation at 15 processors (15 because of load balancing for

this given problem). However, when going to 30 processors, the speed up drops dramatically.

This is caused by either slowing message passing between machines or non-optimization of

scheduling, issues which are being investigated. Also, we have used MPICH routines, but

the use of SUN MPI may give improved performance on this SUN system. Nevertheless,

the speed up with 15 processors is a factor of 13, which is encouraging. Note that a point

is also shown for the DEC cluster at LLNL for 1 processor. BOUT is somewhat faster than

the SUN cluster for our problem using 1 processor, but more significantly, it is quite slow

in the parallel mode because of scheduling issues which prevent us from obtaining even 10

processor on a given machine for a sustained period of time.

When this same problem is run on the T3E-900 at NERSC, one can more effectively

study the behavior from 15 to 60 or more processors, and the results, shown in Fig. 8, are

even more impressive. One can see that the speed up is actually super-linear over the range

considered when normalized to the case using 5 processors which is the smallest number of

processors we could fit this problem into. The super-linear behavior, or off-set linear at high

processor number, is most likely caused by the different levels of CPU memory available on

the T3E. For the 5 PE case, the memory required per processor is significantly larger than

that available in the fast cache memory, while for the 60 processor case, a larger percentage

of the calculation can reside in the fast cache memory. The division of work for the 60

processor case is 81% for evaluating the BOUT physics equations, 12% for internal PVODE

calculations, 6% for interprocessor MPI communications, and 1% for other overhead costs.

The load balance between processors is very good with only a -1% variation.

14

V. Conclusions

We have succeeded to develop parallel versions of two workhorse codes to simulate edge

plasmas in MFE devices: UEDGE for 2-D transport and profile evolution, and BOUT for

3-D turbulence. Both codes solve the magnetized plasma fluid equations, with UEDGE

focusing on long-time development of the plasma profiles and BOUT dealing with short-

time turbulence which causes anomalous radial transport. A similar domain decomposition

model is used to achieve the parallelization where we then utilize the recently developed

LLNL Newton-Krylov solvers PVODE and KINSOL.

The parallelization of UEDGE has allowed us to obtain nearly an order of magnitude

speed up in execution time for the plasma equations on 16 processors.15 Here we were able to

reuse almost all of the original FORTRAN coding, although we did have to create a BASIS-

free version of the code that could run on the T3E; with the automated conversionllll’ to

PYTHON, this should not be needed in the future. We developed a domain decomposition

model including an automatic decomposition routine and a number of message passing

routines, plus tested and debugged interface routines with the PVODE and KINSOL solvers.

The fluid gas equations do not parallelize as effectively as the plasma equations which

we have identified as caused by the anisotropic mesh and lack of domain overlap in the

preconditioner. There are overlap methods which should be assessed for this problem.

Also, the coupling of the parallel plasma equations with a parallel neutral Monte Carlo

code looks promising.

The results for the BOUT 3-D code have exceeded our initial expectations. The conver-

sion to the Newton-Krylov solver3 has produced a code which runs as much as 50 times faster

compared to a Adams functional iteration method. In fact, the previous predictor-corrector

method we used, which is even simpler than the Adams functional iteration method, and

could not be practically used for the simulations which include X-point shear from the

equilibrium magnetic field. These simulations are very important for understanding the

behavior of present experiments and designing future devices.lsrlg

The parallelized version of BOUT continues to work well with a poloidal domain decom-

position, giving a factor of 13 speed up for 15 processors on the SUN Wildfire and a very

encouraging factor of 69 speed up for 60 processors on the T3E-900. The degradation on the

15

Wildfire system at 15 processors may be do to inefficient message passing by using MPICH

and not SUN MPI; this is presently be checked. The super-linear speed up on the T3E is

likely due to the better utilization of cache memory for the larger number of processors.

Most recently, we have extended this case to 120 processor on the T3E, and find the data on

the same off-set linear curve. The large speed up of BOUT gives real optimism concerning

coupling UEDGE and BOUT. Previously, BOUT was very time consuming, which made

such coupling seem far off; now it is a real possibility.

There are two areas where more short-term improvements may be realized with BOUT

performance. One is to extend the domain decomposition to the radial direction as in

UEDGE. This will allow more domains as the number of allowable toroidal modes increases.

Here we will deal with the coupling of the potential equations across the radial domains by a

parallel tridiagonal solver” or an Newton-Krylov solver using a preconditioner. The second

area being focused on is to increase the time step of the PVODE integration further by

providing a preconditioner for the time dependent equations. This gain does have limitations

in that we must still properly resolve the turbulence. Some simple preconditioners where

tried without much improvement, but we know from our experience with UEDGE that

preconditioners can be effective for the equations set we are using, and this warrants further

investigation.

Acknowledgments: This work was supported by the LDRD program at LLNL during Fis-

cal Years 1997-98 as project 97-ERD-045. We have benefited from many useful discussions

with A.C. Hindmarsh, A.G. Taylor, and P.N. Brown. The simulations on the SUN Wildfire

and DEC computers were performed at LLNL while the simulations on the T3E-600 and

T3E-900 computers were performed at NERSC. We thank the Livermore Computing Center

staff and the NERSC staff for their able assistance. Chris H.Q. Ding from NERSC has been

especially helpful.

16

References

‘T.D. Rognlien, P.N. Brown, R.B. Campbell, et al., “2-D Fluid Transport Simulations of

Gaseous/Radiative Divertor,” Contrib. Plasma Phys. 34, 362 (1994).

2Xueqiao Xu and Ronald H. Cohen, “Scrape-Off Layer Turbulence Theory and Simula-

tions,” Contrib. Plasma Phys. 38, 158 (1998).

3A.C. Hindmarsh and A.G. Taylor, “PVODE and KINSOL: Parallel Software for Differen-

tial and Nonlinear Systems,” Lawrence Livermore National Laboratory Report UCRL-

ID-129739, Feb. 1998.

4P.N. Brown and A.C. Hindmarsh, “Reduced Storage Matrix Methods in Stiff ODE Sys-

tems,” J. Appl. Math. Comp. 31, 40 (1989).

5P N Brown and Y. Saad, “Hybrid Krylov Methods for Nonlinear Systems of Equations,” . .

SIAM J. Sci. Stat. Comput. 11, 450 (1990).

6W.D. Gropp, E. Lusk, and A. Skjellum, Using MPI Portable Parallel Programming with

the Message-Passing Interface, The MIT Press, Cambridge, MA, 1994.

7Y. Saad “ILUT: A Dual Threshold Incomplete ILU Factorization,” Num. Lin. Alg. Applic. 7

1, 387 (1994).

‘Yossef Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Co., Boston,

MA, 1996.

‘P.F. Dubois, et al., “The Basis System”, Lawrence Livermore National Laboratory Report

UCRL-MA-118543, parts l-6, 1994.

“Mark Lutz, Programming Python, O’Reilly & Associates, Sebastopol, CA 1996.

‘lD.P. Grote, private communication, 1998.

12T-Y.B. Yang, private communication, 1998.

r3S.I. Braginskii, “Transport Processes in a Plasma”, in Reviews of Plasma Physics, Vol. I,

Ed. M.A. Leontovich (Consultants Bureau, New York, 1965)) p. 205.

17

14T.D. Rognlien, X.Q. Xu, P.N. Brown, A.C. Hindmarsh, and A.G. Taylor, “Parallelization

of an Edge Plasma Transport Code via Domain Decomposition,” Bull. Am. Phys. Sot.

42, 1584 (1997).

15T D Rognlien, X.Q. Xu, A.C. Hindmarsh, P.N. Brown, and A.G. Taylor, “Algorithms . .

and Results for a Parallelized Fully-Implicit Edge Plasma Code,” Int. Conf. Num. Sim.

Plasmas, Feb. 10-12, 1998, Santa Barbara, CA.; LLNL Report UCRL-JC-129223-abs.

16E.T. Chow, private communication, 1998.

17M.E. Rensink, L. LoDestro, G.D. Porter, T.D. Rognlien, and D.P. Coster, “A Comparison

of Neutral Gas Models for Divertor Plasmas,” Contrib. Plasma Phys. 38, 325 (1998).

“X.Q. Xu, R.H. Cohen, G.D. Porter, et al., “Turbulence in Boundary Plasmas,” J. Nucl.

Mater., to be published (1999).

“X.Q. Xu, R.H. Cohen, G.D. Porter, et al., “Turbulence Studies in Tokamak Boundary

Plasmas with Realistic Divertor Geometry,” Proc. 17th Fusion Energy Conf., Yokohama,

Japan, Oct. 19-24, 1998, paper IAEA-Fl-CN-69/THP2/03; to be pub., IAEA (Vienna).

‘ON. Mattor, T.J. Williams, and D.W. Hewett, “Algorithm for Solving Tridiagonal Problems

in Parallel,” Parallel Computing 21, 1769 (1995).

18

Figures

FIG. 1. The toroidal tokamak geometry simulated by the UEDGE and BOUT codes. In

a), the poloidal plane plot shows the 2-D edge region simulated by UEDGE and the

mesh used which has one coordinate based on magnetic flux surfaces as provided by an

MHD equilibrium code. In addition to simulating the poloidal annulus in a), BOUT

also allows fluctuations to have toroidal variations which fit periodically into the toroidal

segment shown from the top view in b). Thus, inclusion on longer toroidal wavelength

modes requires using a larger toroidal segment at increase computational cost.

FIG. 2. The poloidal plane is divided into 4 main regions for the domain decomposition

model, each of which can be further subdivided. The 4 regions are mapped into the

rectangular geometry shown in the lower part of the figure by opening the poloidal

configuration along the dotted line.

FIG. 3. Division of UEDGE geometry into 16 regions is shown in a), while in b) more detail

of mesh is shown within the domains and the overlapping guard cells.

FIG. 4. Schematic showing the three major components of the parallel UEDGE code as

replicated on each domain or processor.

FIG. 5. Comparison of time to reach a steady state solution for the parallel UEDGE run

on the T3E-600 parallel computer with 1 processor and 16 processors for the plasma

equations with PVODE. The point labeled X uses the PVBBDPRE preconditioner and

the + point uses the internal UEDGE preconditioner. The table gives the number

of function evaluations, preconditioner evaluations, and the normalized time to steady

state.

FIG. 6. Time step allowed in BOUT over the course of a time dependent simulation show-

ing the improvement obtained with new Krylov solver PVODE (or CVODE on serial

computers) compared to the previously-used functional iteration method.

FIG. 7. Comparison of speed of parallel BOUT run on the LLNL SUN Wildfire system with

16 processors per machine. Only poloidal decomposition is used with no preconditioner.

The drop from 15 to 30 processors is due to needed to run between two computers; may

be due to slowing message passing or non-optimization of scheduling.

19

FIG. 8. Comparison of speed of BOUT runs with various numbers of processors on the

NERSC CRAY T3E-900. Only poloidal decomposition is used with no preconditioner.

The super-linear behavior, or off-set linear curve, is likely caused by better utilization

of fast cache memory at for a large number of processors.

2.5

2 2mo
5 .I .Z
g 1.5

3 .I
5
> 1.0

0.5

-I- I , I , I , , , I , I , I

0 1.0 1.5 2.0
Major radius, R (m)

2.5

Fig. I

separatrix

p,C CI divertor plate

1
scrape-off layer

J
separatrix

3 i
private ;
flux :

2
core

i 4
! private
i flux

Fig. 2

12 i
I I

13 i 14 i 15 I I I ~...............;...................~.....................’~.............

8 i
I

g r 10 i 11 I I I 1................................ SOL
I~..lllllllllll I

4 i 5 : 6 i7 I I I I ,...............,...................~~~............. I
COLE 2

I
0 PF j 1 ; PF 3 I I .

exterior

guard

\

L
cells k l-
have I
dynamic
variables

interior
guard
cells only
used to
pass data

Fig. 3

FORTRAN PHYSICS SOURCE I FORTRAN i

Initialize
mesh and --+
variables

I
I

i

domain 1

UEDGE
transport

code
(geom., etc.)

I < ----> c j
j ITERFACE i
InI

+ F-->C I--+.

III

Right-hand side
and

preconditioner

I

i

I

C SOLVER

PVODE &
KINSOL

matrix-free
Krylov

solvers

+
I
I
I
I
I
I
I

UEDGE
transport

code
(geom., etc.)

-------m__

I
I
I

+
I
I
I
I
I

I
I

I

F --> C f l
I

PVODE &
KINSOL

matrix-free
Krylov

solvers domain 2 Right-hand side
and

preconditioner ylI F <--> C

I

I+
I
I
I
I
I
I

4

-------------- --------&-----------~-------A-------
1

i I
. I I ‘I

I I
. I

I
. I

I
domain 3 I I

I I
I I

I

Fig. 4

0.03

1 3 10
Number of processors

30

Num. PEs Func. eval Prec. eval Nor. time Ideal time

1 (@) 2236 9 1.0 1 .o
16 (x) 9803 24 0.168 0.0625 _
16 (+) 5760 67 0.118 0.0625

Fig. 5

le+Ol f I I I

domparition of two implicit methodg in BOUT

8 le+OO

z

ii .I

G Q) le-01
N .I

'iii
E

z
2 le-02

Normalized time

Fig. 6

Parallel Speed-up of BOUT on Sunbert
Sunbert is Sun Cluster with 48 PE and 16 PE/Box

Number of processors(PEs)

Fig. 7

Parallel Speed-up of BOUT on T3E
701 I I I I I I

60

50

40

30

20

10

60
01 I I I

0 10 20 30 40 50

Number of processors (PEs)

Fig. 8

